38 research outputs found

    Post-procedural and long-term functional outcomes of jailed side branches in stented coronary bifurcation lesions assessed with side branch Murray law–based quantitative flow ratio

    Get PDF
    IntroductionIn coronary bifurcation lesions treated with percutaneous coronary intervention (PCI) using a 1-stent strategy, the occurrence of side branch (SB) compromise may lead to long-term myocardial ischemia in the SB territory. Murray law–based quantitative flow ratio (μQFR) is a novel angiography-based approach estimating fractional flow reserve from a single angiographic view, and thus is more feasible to assess SB compromise in routine practice. However, its association with long-term SB coronary blood flow remains unknown.MethodsA total of 146 patients with 313 non-left main bifurcation lesions receiving 1-stent strategy with drug-eluting stents was included in this retrospective study. These lesions had post-procedural Thrombolysis in Myocardial Infarction (TIMI) flow grade 3 in SBs, and documented angiographic images of index procedure and 6- to 24-month angiographic follow-up. Post-procedural SB μQFR was calculated. Long-term SB coronary blood flow was quantified with the TIMI grading system using angiograms acquired at angiographic follow-up.ResultsAt follow-up, 8 (2.6%), 16 (5.1%), 61 (19.5%), and 228 (72.8%) SBs had a TIMI flow grade of 0, 1, 2, and 3, respectively. The incidences of long-term SB TIMI flow grade ≤1 and ≤2 both tended to decrease across the tertiles of post-procedural SB μQFR. The receiver operating characteristic curve analyses indicated the post-procedural SB μQFR ≤0.77 was the optimal cut-off value to identify long-term SB TIMI flow grade ≤1 (specificity, 37.50%; sensitivity, 87.20%; area under the curve, 0.6673; P = 0.0064), and it was independently associated with 2.57-fold increased risk (adjusted OR, 2.57; 95% CI, 1.02–7.25; P = 0.045) in long-term SB TIMI flow grade ≤1 after adjustment.DiscussionPost-procedural SB μQFR was independently associated with increased risk in impaired SB TIMI flow at long-term follow-up. Further investigations should focus on whether PCI optimization based on μQFR may contribute to improve SB flow in the long term

    Evaluating the diagnostic accuracy of the Xpert MTB/RIF assay on bronchoalveolar lavage fluid: A retrospective study

    No full text
    Objective: Limited data on the diagnostic accuracy of the Xpert MTB/RIF assay using bronchoalveolar lavage fluid from patients with suspected pulmonary tuberculosis (PTB) have been reported in China. Therefore, a retrospective study was designed to evaluate the diagnostic accuracy of this assay. Methods: Clinical, radiological, and microbiological characteristics of 238 patients with suspected PTB were reviewed retrospectively. The sensitivity, specificity, positive predictive value, and negative predictive value for the diagnosis of active PTB were calculated for the Xpert MTB/RIF assay using TB culture or final diagnosis based on clinical and radiological evaluation as the reference standard. Results: The sensitivity and specificity of the Xpert MTB/RIF assay were 84.5% and 98.9%, respectively, and those for smear microscopy were 36.2% and 100%, respectively, when compared to the culture method. However, compared with the sensitivity and specificity of final diagnosis based on clinical and radiological evaluation, the sensitivity and specificity of the assay were 72.9% and 98.7%, respectively, which were significantly higher than those for smear microscopy. Conclusions: The Xpert MTB/RIF assay on bronchoalveolar lavage fluid could serve as an additional rapid diagnostic tool for PTB in a high TB-burden country and improve the time to TB treatment initiation in patients with PTB

    ZnO Hierarchical Nanostructure Photoanode in a CdS Quantum Dot-Sensitized Solar Cell

    No full text
    <div><p>A hierarchical array of ZnO nanocones covered with ZnO nanospikes was hydrothermally fabricated and employed as the photoanode in a CdS quantum dot-sensitized solar cell (QDSSC). This QDSSC outperformed the QDSSC based on a simple ZnO nanocone photoanode in all the four principal photovoltaic parameters. Using the hierarchical photoanode dramatically increased the short circuit current density and also slightly raised the open circuit voltage and the fill factor. As a result, the conversion efficiency of the QDSSC based on the hierarchical photoanode was more than twice that of the QDSSC based on the simple ZnO nanocone photoanode. This improvement is attributable to both the enlarged specific area of the photoanode and the reduction in the recombination of the photoexcited electrons.</p></div

    The XRD patterns and TEM images of the ZNCs and ZNC/ZNS nanostructures.

    No full text
    <p>(A) XRD patterns of a ZNC array, a ZNC/ZNS array and a CdS QD-sensitized ZNC/ZNS array, (B) TEM image of a ZNC, (C) TEM image and (D) HRTEM image of a ZNC/ZNS nanostructure, (E) EDS of a ZNC/ZNS nanostructure.</p

    Values of the resistance and capacitance per unit area across the photoanodes at the ZnO/CdS/electrolyte interfaces obtained from the fitting of the data shown in Fig 5B.

    No full text
    <p>Values of the resistance and capacitance per unit area across the photoanodes at the ZnO/CdS/electrolyte interfaces obtained from the fitting of the data shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0138298#pone.0138298.g005" target="_blank">Fig 5B</a>.</p
    corecore